Soil nutrient cycles as a nonlinear dynamical system
نویسندگان
چکیده
An analytical model for the soil carbon and nitrogen cycles is studied from the dynamical system point of view. Its main nonlinearities and feedbacks are analyzed by considering the steady state solution under deterministic hydro-climatic conditions. It is shown that, changing hydroclimatic conditions, the system undergoes dynamical bifurcations, shifting from a stable focus to a stable node and back to a stable focus when going from dry, to well-watered, and then to saturated conditions, respectively. An alternative degenerate solution is also found in cases when the system can not sustain decomposition under steady external conditions. Different basins of attraction for “normal” and “degenerate” solutions are investigated as a function of the system initial conditions. Although preliminary and limited to the specific form of the model, the present analysis points out the importance of nonlinear dynamics in the soil nutrient cycles and their possible complex response to hydro-climatic forcing.
منابع مشابه
Solving Second Kind Volterra-Fredholm Integral Equations by Using Triangular Functions (TF) and Dynamical Systems
The method of triangular functions (TF) could be a generalization form of the functions of block-pulse (Bp). The solution of second kind integral equations by using the concept of TF would lead to a nonlinear equations system. In this article, the obtained nonlinear system has been solved as a dynamical system. The solution of the obtained nonlinear system by the dynamical system throug...
متن کاملThe Study of Nonlinear Dynamical Systems Nuclear Fission Using Hurwitz Criterion
In this paper, the nonlinear dynamic system of equations, a type of nuclear ssion reactor is solved analytically and numerically. Considering that the direct solution of three-dimensional dynamical systems analysis and more in order to determine the stability and instability, in terms of algebraicsystems is dicult. Using certain situations in mathematics called Hurwitz criterion, Necessary and ...
متن کاملMathematical modeling of optimized SIRS epidemic model and some dynamical behavior of the solution
In this paper, a generalized mathematical model of spread of infectious disease as SIRS epidemic model is considered as a nonlinear system of differential equation. We prove that for positive initial conditions the resulting equivalence system has positive solution and under some hypothesis, this system with initial positive condition, has a positive $T$-periodic solution which is globally asym...
متن کاملFractional dynamical systems: A fresh view on the local qualitative theorems
The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...
متن کاملDynamical behavior and synchronization of hyperchaotic complex T-system
In this paper, we introduce a new hyperchaotic complex T-system. This system has complex nonlinear behavior which we study its dynamical properties including invariance, equilibria and their stability, Lyapunov exponents, bifurcation, chaotic behavior and chaotic attractors as well as necessary conditions for this system to generate chaos. We discuss the synchronization with certain and uncerta...
متن کامل